Journal of Organometallic Chemistry, 122 (1976) 187–196 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

ÜBERGANGSMETALL–CARBIN-KOMPLEXE

XIX *. mer-TETRAFLUOROBORATO-TRICARBONYL-TRIMETHYLPHOSPHIN-METHYLCARBIN-CHROM, EIN NEUER CARBIN-KOMPLEX MIT KOORDINATIV GEBUNDENEM TETRAFLUOROBORATO-LIGANDEN

KONRAD RICHTER, ERNST OTTO FISCHER * und CORNELIUS GERHARD KREITER Anorganisch-Chemisches Institut der Technischen Universität, München (B.R.D.) (Eingegangen den 28. Mai 1976)

Summary .

cis-Tetracarbonyltrimethylphosphinemethylmethoxycarbenechromium(0) reacts with BF₃ with splitting off of the methoxy group and substitution of a CO ligand. The product formed was identified as $mer-(BF_4)Cr(CO)_3[P(CH_3)_3]-(CCH_3)$. This new complex, which contains a BF₄-group coordinated to the Cratom, is most sensitive to moisture. With water it reacts to give { $mer-H_2OCr-(CO)_3[P(CH_3)_3](CCH_3)$ } [BF₄]⁻. IR, ¹H NMR, ¹³C NMR and ³¹P NMR spectra of the new compounds are discussed.

Zusammenfassung

cis-Tetracarbonyl-trimethylphosphin-methylmethoxycarben-chrom(0) reagiert mit BF₃ unter Abspaltung der Methoxygruppe und Substitution eines CO-Liganden. Das gebildete Produkt wurde als *mer*-(BF₄)Cr(CO)₃[P(CH₃)₃]-(CCH₃) identifiziert. Der neue Komplex, der eine an Chrom koordinierte BF₄-Gruppe enthält, ist äusserst empfindlich gegenüber Feuchtigkeit. Mit Wasser regiert er zu dem Komplexsalz {*mer*-H₂OCr(CO)₃[P(CH₃)₃](CCH₃)}*[BF₄]⁻. Die IR-, ¹H-NMR-, ¹³C-NMR- und ³¹P-NMR-Spektren der neuen Verbindungen werden diskutiert.

Einleitung

Durch Umsetzungen von Pentacarbonyl-alkoxy(organyl)carben-Metallkomplexen der Elemente der VI. Nebengruppe mit Bortrihalogeniden konnte in

^{*} XVIII. Mitteilung: siehe Ref. 1.

jüngster Zeit eine grosse Zahl verschiedener *trans*-Halogeno-tetracarbonyl-carbin-Metallkomplexe synthetisiert werden [2].

$$(OC)_{5}M - C$$

R + BX₃ \xrightarrow{Pentan} $trans-(OC)_{4}M(X)CR$

(M = Cr, Mo, W; R = Alkyl, Aryl; X = Cl, Br, J)

Während die Reaktion bei Verwendung von BCl_3 , BBr_3 und BJ_3 meist schon bei tiefer Temperatur glatt und rasch verläuft, wurde bei Versuchen unter den gleichen Bedingungen durch Umsetzung mit BF_3 zu den entsprechenden trans-Fluoro-tetracarbonyl-carbin-Metallkomplexen zu gelangen, praktisch keine Umsetzung beobachtet.

Dieses andersartige Verhalten von BF_3 dürfte wohl z. T. auf dessen geringe Löslichkeit in dem als Reaktionsmedium gewöhnlich verwendeten Pentan, hauptsächlich jedoch auf die in der Reihenfolge $BBr_3 \ge BCl_3 > BF_3$ bekanntermassen abnehmende Lewissäureaktivität der Bortrihalogenide zurückzuführen sein.

Es stellte sich deshalb die Frage, ob phosphinsubstituierte Carbenkomplexe, in denen, ¹H-NMR-spektroskopischen Ergebnissen zufolge [3,4], die Lewisbasizität des Sauerstoffatoms im Carbenliganden durch die Substitution eines CO-Moleküls durch einen Liganden mit grösserem σ -Donor/ π -Akzeptor-Verhältnis erhöht sein dürfte, auch mit BF₃ reagieren würde.

Tatsächlich verläuft die Umsetzung von trans-Cr(CO)₄[P(CH₃)₃][C(OCH₃)CH₃] mit BF₃ in gleicher Weise wie die entsprechende Reaktion mit BCl₃ oder BBr₃ völlig glatt zu {trans-[P(CH₃)₃]Cr(CO)₄(CCH₃)}⁺[BF₄]⁻, worüber vor kurzem berichtet wurde [5]. Die Ergebnisse der Umsetzung von *cis*-Cr(CO)₄[P(CH₃)₃]-[C(OCH₃)CH₃] mit BF₃, die zu völlig unerwarteten Produkten führt; sollen im folgenden mitgeteilt werden.

Präparative Ergebnisse

Wird in die tiefrote Lösung von cis-Cr(CO)₄[P(CH₃)₃][C(OCH₃)CH₃] (I) in Pentan bei 0°C gasförmiges BF₃ eingeleitet, so entfärbt sich diese rasch und man beobachtet die Abscheidung eines zähen, bräunlichgelben Reaktionsproduktes. Zum gleichen Ergebnis führt auch die Umsetzung von I mit BF₃ · O(CH₃)₂, das aber wegen seiner geringen Mischbarkeit mit Pentan nur sehr langsam reagiert und überdies, um eine vollständige Reaktion zu erreichen, im Überschuss eingesetzt werden muss.

Obwohl die entstandene Substanz, gelöst in CH_2Cl_2 , im $\nu(CO)$ -Bereich, von einer deutlichen Verschiebung nach höheren Wellenzahlen abgesehen, die gleichen Banden zeigt wie die aus der Umsetzung von I mit den anderen Bortrihalogeniden erhaltenen *mer*-Halogeno-tricarbonyl-trimethylphosphin-methylcarbin-chrom-Komplexe [6], also analog gebaut sein sollte, gelang es nicht, sie wie diese durch Chromatographieren an Kieselgel zu reinigen. Durch Umkristallisieren aus CH_2Cl_2/\ddot{A} ther bei tiefer Temperatur konnten aber schliesslich intensiv gelbe, plättchenförmige, äusserst hygroskopische Kristalle isoliert werden. Deren Elementaranalyse führte zu dem völlig überraschenden Ergebnis, dass wesentlich mehr Fluor als erwartet und überdies noch Bor enthalten war. Sie zeigte (unter der vernünftig erscheinenden Annahme, dass die Differenz zwischen der Summe der gefundenen Prozentwerte und 100% dem nicht bestimmten Sauerstoff entspricht) dass, ausgehend von der Formel $LCr(CO)_3[P(CH_3)_3]$ -(CCH₃), L die Zusammensetzung BF₄ besitzen musste.

Die Reindarstellung dieses Komplexes bereitete jedoch zunächst grösste Schwierigkeiten. Achtet man nämlich während Reaktion und Aufarbeitung nicht auf peinlichsten Ausschluss von Feuchtigkeit, Spuren werden besonders durch Chromatographieren oder Filtrieren über Kieselgel eingeschleppt, so erhält man hellgelbe nadelige Kristalle der analytischen Zusammensetzung $(BF_4)Cr(CO)_3[P(CH_3)_3](CCH_3)(H_2O)$ (III). Tatsächlich isolierten wir zuerst diesen wasserhaltigen Komplex.

$$cis-Cr(CO)_{4}[P(CH_{3})_{3}][C(OCH_{3})CH_{3}] + 2BF_{3}$$

$$\xrightarrow{-CO}{-\{BF_{2}OCH_{3}\}} mer-(BF_{4})Cr(CO)_{3}[P(CH_{3})_{3}](CCH_{3})$$

$$\xrightarrow{+H_{2}O} \{mer-H_{2}OCr(CO)_{3}[P(CH_{3})_{3}](CCH_{3})\}^{+}[BF_{4}]^{-}$$
(III)

Die Struktur der neuen Komplexe konnte durch IR-, ¹H-NMR-, ¹³C-NMR und vor allem ³¹P-NMR-spektroskopische Untersuchungen, sowie auf Grund ihres chemischen Verhaltens geklärt werden. Es zeigte sich, dass II sowohl in fester Form, als auch in Lösung als *mer*-(BF₄)Cr(CO)₃[P(CH₃)₃](CCH₃) formuliert werden muss. Dies Ergebnis überrascht vor allem deshalb, weil das bislang für kaum koordinierbar gehaltene BF₄⁻-Anion als an Chrom fixierter Komplexligand fungiert. Die Strukturvorstellung wird zusätzlich gestützt einerseits dadurch, dass Metallcarbonylhalogenide mit Lewissäuren zu Additionsverbindungen reagieren, in denen letztere über das Halogenatom gebunden sind wie beispielsweise im Mn(CO)₅BrAlBr₃ [7], sowie durch Befunde, gemäss denen auch *trans*-Halogeno-tetracarbonyl-carbin-Metallkomplexe mit überschüssigem Bortrihalogenid analoge, wenn auch instabilere Addukte bilden [8], andererseits durch die Tatsache, dass in jüngster Zeit für {Cu[P(C₆H₅)₃]₃}⁺[BF₄]⁻ in kristallinem Zustand eine schwache Koordinierung des BF₄⁻-Anions erstmals röntgenographisch nachgewiesen werden konnte [9].

Als weiterer Strukturbeweis für II ist schliesslich die Reaktion dieses Komplexes mit Wasser zu werten. Wäre nämlich die Lewissäure BF₃ über ein Carbonylsauerstoffatom gebunden, eine solche Koordination ist a priori nicht auszuschliessen, so sollte bei Einwirkung von Feuchtigkeit die Bildung von mer-Fluoro-tricarbonyl-trimethylphosphin-methylcarbin-chrom(0) beobachtet werden. Experimentell findet man jedoch, wie schon berichtet, dass ein Molekül H₂O in den Komplex eingebaut wird. Die spektroskopischen Ergebnisse beweisen, dass bei der Reaktion das *trans*-ständig zum Carbinliganden koordinierte BF₄⁻ durch ein Wassermolekül verdrängt wird, der Komplex also, da ein formal anionischer durch einen neutralen Liganden ersetzt wird, salzartigen Charakter aufweisen muss und dann als {mer-(H₂O)Cr(CO)₃[P(CH₃)₃](CCH₃)}⁺[BF₄]⁻ zu formulieren ist. Carbonylkomplexe, die H₂O als Liganden aufweisen, sind seit langem bekannt. Ein vergleichbarer Komplex [C₅H₅Fe(CO)₂(H₂O]⁺[BF₄]⁻ wurde vor kurzem beschrieben [10]. Wie dieser ist auch III Ligandenaustauschreaktionen zugänglich. So führt beispielsweise die Umsetzung mit LiJ, wie die Identität der IR- und ¹H-NMR-Spektren, sowie die Gesamtanalyse beweisen, zu dem schon früher beschriebenen Komplex [6] *mer*-JCr(CO)₃[P(CH₃)₃](CCH₃), was wiederum als Bestätigung der Strukturvorstellungen für II und III zu werten ist.

Eigenschaften

Die Komplexe II und III sind gelbe, diamagnetische Verbindungen, die sich in CH₂Cl₂ sehr gut, in Benzol und Äther nur mässig und in gesättigten Kohlenwasserstoffen praktisch nicht lösen. Während II bereits Spuren von Feuchtigkeit begierig aufnimmt, ist III gegenüber Wasser weniger empfindlich. Durch Luftsauerstoff werden beide Substanzen rasch oxidiert. Beiden Komplexen ist eine ausgeprägte Thermolabilität gemeinsam. Sie zersetzen sich auch unter Stickstoffatmosphäre schon bei Raumtemperatur merklich.

Spektroskopische Untersuchungen

IR-Spektren

Die IR-Spektren von II und dem Aquokomplex III in CH_2Cl_2 -Lösung, aber auch in Nujol sind im $\nu(CO)$ -Bereich fast gleich. Die $\nu(CO)$ -Frequenzen, sowie die daraus nach Cotton [11] errechneten Kraftkonstanten sind in Tabelle 1 denjenigen von *mer*-ClCr(CO_3)₃[P(CH_3)₃](CCH₃) (IV) [6] gegenübergestellt.

Form und Intensitätsverhältnisse der Banden gleichen völlig denjenigen der mer-XCr(CO)₃[P(CH₃)₃](CCH₃)-Komplexe. Sie beweisen den analogen Aufbau von II und III. Eine gegenüber den trans-halogensubstituierten Komplexen stärkere Abnahme der Metall—CO-Rückbindung wird durch die vergrösserten Kraftkonstanten angezeigt. Die praktisch gleichen ν (CO)-Absorptionen von II und III weisen darauf hin, dass durch die Substitution des BF₄⁻ durch H₂O, wohl wegen der damit verbundenen Positivierung des Komplexes, die elektronischen Verhältnisse nicht wesentlich verändert werden.

Erhebliche Unterschiede finden sich in den übrigen Bereichen des IR-Spektrums. Wegen der extremen Feuchtigkeitsempfindlichkeit von II konnten KBr-Presslinge, mit denen man meist sehr gut aufgelöste Spektren erhält, nicht präpariert werden. Die in Nujol aufgenommen Spektren von II und III und diejenigen der früher beschriebenen *mer*-XCr(CO)₃[P(CH₃)₃](CCH₃)-Komplexe sind in Tabelle 2 zusammengefasst. Wegen der verwendeten NaCl-Fenster ist

TABELLE 1

IR-SPEKTREN DER KOMPLEXE II, III UND IV IM CO-BEREICH, AUFGENOMMEN IN CH₂Cl₂ (in cm⁻¹) UND CO-KRAFTKONSTANTEN (mdyn Å⁻¹)

	(2) A1	A ₁ ⁽¹⁾	Bı	k1	k2	k _i
11	2087m	2016s	2016s	16.55	16.95	0.26
III	2086m	2014s	2014s	16.53	16.93	0.26
IV	2070m	1998s	1998s	16.27	16.66	0.26 [6]

TABELLE 2

IR-ABSORPTIONSFREQUENZEN (in cm⁻¹) VON mer-XCr(CO)₃[P(CH₃)₃](CCH₃)-KOMPLEXEN IN NUJOL

x						
J	Br	Cl	BF4	[(H ₂ O)] ⁺ BF ₄ ⁻		
				3435vs(br)		
2060m	2065m	2060m	2085m	2085m		
1995vs	1995vs	1990vs	2005vs(br)	2000vs(br)		
1970/5	197048	130345		1640m(br)		
1340ur	1340w	1340w	1340w	1345w		
1305vw	1305vw	1305vw	1310vw	1312w		
1284m	1280m	1283m	1290m	1293m		
1262m	1265m	1265m	1270m	1270m		
			1110m(br)	1108m		
				1055m		
				995m		
956s(br)	955s(br)	955s(br)	958m(br)	960m(br)		
	• •		940w(sh)			
			910m			
				865(sh)		
855m	850m	850m	850w	852w		
				763w		
			745m(sh)			
730s	730s	733s	735s	735s		
670s	668s	670s	670m	670m		
620m	620m	620w	620w			

der aufgenommene Bereich nach unten durch die bei 600 cm⁻¹ beginnende Eigenabsorption von NaCl begrenzt.

Besonders auffällig sind die nur bei III auftretenden Banden bei 3435 cm^{-1} und 1640 cm⁻¹, die den OH-Streck- bzw. -Deformationsschwingungen des Aquoliganden zuzuordnen sind [12].

Eine Wechselwirkung des Komplexkations $\{(H_2O)Cr(CO)_3[P(CH_3)_3](CCH_3)\}^*$ mit dem BF₄⁻-Anion über Wasserstoffbrücken dürfte wahrscheinlich sein.

Die im Spektrum von II im Vergleich zu den mer-XCr(CO)₃[P(CH₃)₃](CCH₃)-Komplexen (X = Cl, Br, J) zusätzlich auftretenden Banden müssen naturgemäss von Cr—F- bzw. B—F-Schwingungen herrühren. Zwar erscheinen diese breit und unstrukturiert, eine Analyse soll aber dennoch versucht werden.

Für ein isoliertes BF_4 -Anion, das die Symmetrie T_d besitzt, sind vier Normalschwingungen, zwei Streckschwingungen $\nu_1(A_1)$ und $\nu_3(F_2)$ und zwei Deformationsschwingungen $\nu_2(E)$ und $\nu_4(F_2)$ möglich, von denen jedoch nur ν_3 und ν_4 infrarotaktiv sind. Für die Alkalisalze wurden folgende Raman- (R) und IR-Absorptionen gefunden [12].

Spezies	$\nu_1(A_1)$	$v_2(E)$	$\nu_3(F_2)$	$v_4(F_2)$	
¹¹ BF ₄ ⁻ ¹⁰ BF ₄ ⁻	769 769 (R)	353 353 (R)	984 1016 (R)(IR)	524 529 (R)(IR)	

Einfache Koordination von BF_4^- erniedrigt dessen Symmetrie auf $C_{3\nu}$, wodurch alle vier Schwingungen infrarotaktiv werden und zusätzlich die dreifach entarteten v_3 und v_4 in zwei Komponenten aufspalten $(F_2 \rightarrow A_1 + E)$. Im erfassten Messbereich müssten also die Schwingungen $\nu_1(A_1)$, $\nu_3(A_1)$ und $\nu_3(E)$ gefunden werden, wobei für die beiden letzteren zwei getrennte Isotopenbanden beobachtet werden sollten. Das Auftreten von vier zusätzlichen Banden bei 745, 910, 940 und 1110 cm⁻¹ – die Letztgenannte ist das Maximum einer sehr breiten Absorption, die sich wahrscheinlich aus zwei ebenfalls breiten Banden zusammensetzt — kann als Nachweis für eine unsymmetrische Umgebung der BFa⁻-Einheit bzw. für ihre Bindung im Komplex angesehen werden. Unter der Voraussetzung, dass alle genannten Banden von B—F-Schwingungen herrühren, d.h. nicht von der Cr-F-Bindung verursacht werden, kann in Anlehnung an frühere IR-spektroskopische Untersuchungen an ${Cu[P(C_6H_5)_3]_3}^{+}[BF_4]^{-}$, für das eine wenn auch schwache Koordination des BF₄-Anions nachgewiesen wurde [9], mit der auf Grund der mässigen Auflösung gebotenen Vorsicht folgende Zuordnung getroffen werden:

$$745 \text{ cm}^{-1} = \nu_1(A_1)$$

$$910 \text{ cm}^{-1} = \nu_3(A_1)({}^{11}\text{BF}_4)$$

$$1110 \text{ cm}^{-1} = \nu_3(E)$$

$$940 \text{ cm}^{-1} = \nu_3(A_1)({}^{10}\text{BF}_4)$$

In III kann das BF_4^- -Anion zwar isoliert vorliegen, eine Wechselwirkung mit dem Komplexkation über eine oder möglicherweise zwei H-Brücken ist in festen Zustand jedoch recht wahrscheinlich. Im letzteren Fall, in dem sich die Symmetrie des BF_4^- -Anions auf C_{2v} erniedrigt, sind für die v_3 -Schwingungen drei verschiedene Absorptionen zu erwarten ($F_2 \rightarrow A_1 + B_1 + B_2$), die wiederum in jeweils zwei Isotopenbanden aufspalten sollten. Das Auftreten dreier breiter Absorptionen im fraglichen Bereich bei 1108, 1055 und 995 cm⁻¹, die schwächeren ¹⁰B-Isotopenbanden werden wahrscheinlich nicht mehr aufgelöst, ist als Hinweis auf eine solche Verminderung der Symmetrie des BF_4^- -Anions zu werten.

Die Banden bei 763 und 855 cm⁻¹ wären dann der ν_1 -Streckschwingung sowie der ρ_r -"rocking"-Schwingung des koordinierten Wassers zuzuordnen.

¹H-NMR-Spektren

Die ¹H-NMR-spektroskopischen Daten der Komplexe II und III sind in Tabelle 3 denjenigen des Komplexes IV gegenübergestellt.

Abgesehen von dem bei III zusätzlich auftretenden Signal für die OH-Protonen unterscheiden sich die ¹H-NMR-Spektren der beiden neuen Komplexe kaum. Die gegenüber IV nur sehr geringe Verschiebung der Signale nach tieferem Feld, sowie die praktisch gleiche Kopplung der CCH₃- und PCH₃-Protonen mit dem Phosphoratom sind als Indiz für den analogen Aufbau von II und III zu werten.

Ein Hinweis auf in *trans*-Stellung zum Carbinliganden koordiniertes BF_4^- bei II auch in Lösung kann aus den ¹H-NMR-Spektren nicht erhalten werden.

¹³C-NMR-Spektren

Im Gegensatz zu den ¹H-NMR-Spektren unterscheiden sich die ¹³C-NMR-Spektren (s. Tabelle 4) der Verbindungen II und III recht deutlich von denen der *mer*-XCr(CO)₃[P(CH₃)₃](CCH₃)-Komplexe (X = Cl, Br, J). Zwar beweist die

TABELLE 3

	O <u>H</u> 2	CCH3	PC <u>H</u> 3	
11		7.44(d,3) ⁴ J(PH) 8 Hz	8.38(d,9) ² J(PH) 9 Hz	
111	6.58(s,2)	7.44(d,3) ⁴ J(PH) 8.5 Hz	8.40(d,9) ² J(PH) 9 Hz	
IV		7.50(d,3) ⁴ J(PH) 8.5 Hz	8.40(d,9) ² J(PH) 9 Hz	

¹H-NMR-SPEKTREN DER KOMPLEXE II, III UND IV, AUFGENOMMEN IN CD_2Cl_2 (τ -Werte bez. auf $CH_2Cl_2 = 4.57$; Intensitäten und Multiplizitäten (), s = Singulett, d = Dublett)

Zahl der gefundenen Signale, sowie deren Aufspaltung durch den Kernspin des Phosphors eindeutig, dass der $Cr(CO)_3[P(CH_3)_3](CCH_3)$ -Rest die gleiche Geometrie aufweist wie in den früher beschriebenen Verbindungen [6], jedoch ist die Lage der Resonanzen teilweise recht unterschiedlich. Das C(Carbin)-Signal erscheint bei tieferem Feld als bei den trans-halogensubstituierten Komplexen $(\Delta \delta \sim 20 \text{ ppm})$, was sich durch die starke Positivierung der Komplexe und die damit verbundene Entschirmung des Carbinkohlenstoffs begründen lässt. Die gegenüber den mer-XCr(CO)₃[P(CH₃)₃](CCH₃)-Komplexen kleineren δ -Werte der CO-Liganden entsprechen der häufig gemachten Beobachtung, dass die Verminderung der M-CO-Rückbindung eine Hochfeldverschiebung der CO-Signale zur Folge hat. Von besonderem Interesse ist, dass im Spektrum von II das C(Carbin)-Signal nicht als Dublett, sondern als Multiplett registriert wird, welches sich über einen Bereich von mehr als 2 ppm erstreckt. Obwohl eine genaue Analyse des Signals bisher nicht gelungen ist, stellt seine Aufspaltung einen ersten Hinweis dafür dar, dass das BF₄⁻-Anion auch in Lösung am Metall koordiniert ist.

³¹P-NMR-Spektren

Einen entscheidenden Beitrag zur Aufklärung der Struktur der Komplexe II und III leistet die ³¹P-NMR-Spektroskopie (Tabelle 5). Das für III im protonenrauschentkoppelten Spektrum erhaltene Singulett beweist eindeutig, dass dieser

TABELLE 4

¹³C-NMR-DATEN DER KOMPLEXE II, III UND IV IN CD₂Cl₂, $T = -20^{\circ}$ C (δ -Werte in ppm, bez. auf CD₂Cl₂ = 54.26 ppm) CO¹ = trans-ständig zu P, CO² = cis-ständig zu P

 $CO^{-} = trans-standig zu P, CO^{-} = cis-standig zu P$

Kopplungskonstanten m	nit den	Phosphoratom	0	in	Hz
-----------------------	---------	--------------	---	----	----

	C(Carbin)	<u>c</u> o ¹	<u>c</u> o ²	С <u>С</u> Н3	PCH3	
II a	350.77 C	212.91 (7.3)	211.56 (19.5)	44.23 d	16.51 (24.4)	
III ^a	Ь	212.91 (7.3)	211.45 (19.5)	42.94 d	16.72 (24.4)	
IV ^a	329.58 (29.3)	217.28 d	215.07 (22.0)	41.10 d	17.21 (26.9)	

^a Probe mit Cr(acac)₃. ^b Resonanz wurde nicht gefunden. ^c Multiplett (Signalmitte). ^d Kopplungskonstante nicht feststellbar.

³¹ P-NMR-RESONANZEN DER KOMPLEXE II UND III, GEMESSEN IN CD ₂ Cl ₂ BEI –20°C (δ -Werte in ppm, bez. auf ext. 85% H ₃ PO ₄ , Tieffeldverschiebung positiv, Kopplungskonstante mit ¹⁹ F () in Hz)						
II	III					
6.78 Quintett (8.8)	5.81					

Komplex als $\{mer-(H_2O)Cr(CO)_3[P(CH_3)_3](CCH_3)\}^*[BF_4]^-$, also mit einem zum Carbenliganden trans-ständigen Wassermolekül zu formulieren ist, da koordiniertes Fluor mit dem Phosphoratom koppeln sollte. Durch eben diese Wechselwirkung des Phosphors mit dem Fluorkern lassen sich auch wertvolle Informationen über den Aufbau von II in Lösung erhalten. Während nämlich bei vollständiger Dissoziation des Komplexes in Ionen nur ein Singulett im Phosphorresonanzspektrum zu erwarten ist, müsste bei starrer Koordination des BF₄⁻ das Phosphorsignal durch das direkt am Chrom gebundene Fluoratom in ein Dublett aufspalten, das aufgrund weiterer Kopplung sowohl mit den Boratomen (¹⁰B 18.8 Atom%), I = 3; ¹¹B 81.2 Atom%), I = 3/2), als auch mit den restlichen Fluoratomen eine möglicherweise komplizierte Feinstruktur aufweisen sollte.

Das Experiment zeigt nun völlig unerwartet, dass das Phosphorsignal in ein Quintett aufgespalten ist. Nimmt man an, dass im koordinierten BF_4^- die vier Fluoratome im Sinne einer polytopen Umlagerung ständig ihren Platz wechseln, die Bindung zum Metall dabei aber nicht aufgehoben wird, so bildet ihre hieraus resultierende, zeitlich gemittelte Äquivalenz eine Erklärungsmöglichkeit für die gefundene Signalstruktur. Sie lässt sich jedoch auch als Überlagerung zweier Aufspaltungen interpretieren. Unabhängig davon, welche dieser Erklärungen zutrifft, beweist die Aufspaltung des Phosphorsignals eindrucksvoll, dass das BF_4^- -Anion auch in Lösung am Chrom koordiniert ist.

Leitfähigkeitsmessungen

Gemäss dem aus den spektroskopischen Befunden zu folgernden salzartigen Charakter von III zeigen Lösungen des Komplexes in CH_2Cl_2 elektrolytische Leitfähigkeit. Genaue quantitative Messungen scheiterten jedoch, da sich die Substanz beim Erwärmen auf Raumtemperatur bereits langsam zersetzt und somit eine exakte Einwaage unmöglich ist.

Entgegen allen Erwartungen findet sich auch für II in CH_2Cl_2 ebenfalls eine, wenn auch geringe Leitfähigkeit. Diese dürfte aber, da II äusserst hygroskopisch ist und unter Wasseraufnahme in III übergeht, sich aber beim Arbeiten bei tiefer Temperatur die Einwirkung von Feuchtigkeit praktisch nicht völlig ausschliessen lässt, durch geringe Mengen von III verursacht sein.

Experimenteller Teil

IR-Spektren: Die Aufnahmen im ν (CO)-Bereich wurden mit einem Perkin-Elmer-Spektrometer Modell 21, LiF-Optik, die in gesamten Bereich mit einen Beckman IR-10-Gerät durchgeführt.

¹H-NMR-Spektren: Es wurden 10–15 proz. Lösungen teils mit einem Varian A-60, teils mit einem Jeol C 60 HL-Gerät vermessen.

TABELLE 5

¹³C-NMR-Spektren und ³¹P-NMR-Spektren wurden an einem Bruker-Multikern-Spektrometer HFX-90 registriert.

Für Leitfähigkeitsmessungen wurden eine Wheatstone'sche Brücke Philips PR 9500 und eine platinierte Leitfähigkeitszelle (Z = 1.3 cm) verwendet.

Darstellung der Verbindungen

Alle Arbeiten wurden in Stickstoffatmosphäre durchgeführt. Die Lösungsmittel waren getrocknet (CaH₂, LiAlH₄, Na, P₄O₁₀) und N₂-gesättigt. *cis*-Cr(CO)₄- $[P(CH_3)_3][C(OCH_3)CH_3]$ (I) wurde nach Literaturangaben [13] dargestellt, BF₃ wurde von der BASF AG, Ludwigshafen, zur Verfügung gestellt.

mer-Tetrafluoroborato-tricarbonyl-trimethylphosphin-methylcarbin-chrom (II). Bei der Darstellung achte man peinlich auf den Ausschluss von Feuchtigkeit! Es empfiehlt sich, den Stickstoff und die verwendeten Lösungsmittel über bei 350°C ausgeheiztem Molekularsieb (4 Å Fa. Merck) nachzutrocknen bzw. aufzubewahren.

In einem 1 l-Kolben mit Stickstoffansatz, Gaseinleitungsrohr und Magnetrührer werden 4.5 g (15 mmol) I bei 0°C in ca. 500 ml Pentan gelöst. Beim Durchleiten von gasförmigem BF_3 hellt sich die anfangs tiefrote Lösung auf, wobei sich ein bräunlichgelbes Öl abscheidet. Noch während der Reaktion wird rasch auf –25°C abgekühlt, um eine Zersetzung des entstehenden Produktes zu vermeiden. Sobald die rote Farbe verschwunden ist (ca. 5-8 min), wird die Gaszufuhr beendet und noch 1 h bei -25° C gerührt. Das überstehende Pentan wird dekantiert, und das Reaktionsprodukt, nachdem es noch dreimal mit ca. 200 ml Pentan gewaschen worden ist, 3 h am HV getrocknet. Man nimmt den Rückstand in ca. 30 ml CH₂Cl₂ auf, filtriert bei 0°C über eine kühlbare D3-Fritte und versetzt mit der doppelten Menge Äther. Lässt man langsam abkühlen, so scheidet sich an der Glaswand zunächst ein bräunlich gefärbtes Öl ab, das nach Dekantieren der Mutterlauge verworfen wird. Beim Verwahren der Lösung bei -30°C kristallisiert II oft erst nach Stunden in schönen goldgelben, stark hygroskopischen Blättchen aus. Die Substanz ist bisweilen schon analysenrein, kann aber nötigenfalls durch mechanisches Trennen von Verunreinigungen und Umkristallisieren aus CH₂Cl₂/Äther (1:5) gereinigt werden. Versetzen der Mutterlauge mit Äther und Pentan liefert weitere Substanz in Form eines gelben Pulvers. Ausbeute: 3.2 g (65% bez. auf I).

(Gef.: C, 29.42; H, 3.88; B, 3.40; Cr, 15.75; F, 22.20; P, 9.74. $C_8H_{12}BCrF_4$ -O₃P ber.: C, 29.47; H, 3.71; B, 3.31; Cr, 15.95; F, 23.31; P, 9.50%. Mol.-Gew. 325.96)

mer-Aquo-tricarbonyl-trimethylphosphin-methylcarbin-chrom-tetrafluoroborat (III). 3 g (10 mmol) (I) werden wie oben beschrieben mit BF_3 umgesetzt. Das bräunlichgelbe, zähe Reaktionsprodukt wird bei -10° C in 50 ml CH_2Cl_2 gelöst und mit der gleichen Menge Äther versetzt. Man filtriert die Lösung bei dieser Temperatur über eine ca. 5 cm hohe Schicht nicht ausgeheizten Kieselgels (Fa. Merck, Darmstadt), das zuvor mit ca. 30 ml Äther desaktiviert wurde. Anschliessend wird mit reinem Äther eluiert, bis dieser farblos abläuft.

Die braun gefärbten Verunreinigungen bleiben fast quantitativ auf der Fritte zurück. Aus dem Eluat kristallisiert beim Abkühlen auf -40° C III in nadeligen gelben Kristalle aus, die sich durch Auflösen in wenig CH₂Cl₂ bei -10° C, Versetzen mit der doppelten Menge Äther und Abkühlen auf -40° C umkristallisieren lassen. Sollte das Filtrat noch stark verunreinigt (braun) sein, so ist die Filtration über Kieselgel zu wiederholen. Die Substanz wird nach mehrmaligem Waschen mit Pentan 5 h bei -20° C am HV getrocknet. Ausbeute: 1.2 g (35% bez. auf I).

(Gef.: C, 28.14; H, 4.15; B, 3.20; Cr, 15.23; F, 20.90; P, 7.63. $C_8H_{14}BCrF_4-O_4P$ ber.: C, 27.94; H, 4.10; B, 3.14; Cr, 15.12; F, 22.09; P, 9.60%. Mol.-Gew. 343.97)

Dank

Wir danken der Deutschen Forschungsgemeinschaft, Bonn-Bad Godesberg, und der BASF AG, Ludwigshafen, für wertvolle Unterstützung dieser Arbeit.

Herrn M. Barth sind wir für seine Bemühungen bei den zum Teil sehr schwierigen Mikroanalysen besonders verbunden.

Literatur

1 E.O. Fischer, A. Ruhs und F.R. Kreissl, Chem. Ber., im Erscheinen.

2 E.O. Fischer und U. Schubert, J. Organometal. Chem., 100 (1975) 59.

3 C.G. Kreiter, Habilitationsschrift TU München, 1971.

4 E.O. Fischer und K. Richter, Chem. Ber., 109 (1976) 1140.

5 E.O. Fischer und K. Richter, Chem. Ber., 109 (1976) 2547.

6 E.O. Fischer und K. Richter, Chem. Ber., im Erscheinen.

7 M. Pankowski, B. Demersman, G. Bouquet und M. Bigorgne, J. Organometal. Chem., 35 (1972) 155.

8 H.J. Kalder, persönliche Mitteilung.

9 A.P. Gaughan, Jr., Z. Dori und J.A. Ibers, Inorg. Chem., 13 (1974) 1657.

10 B.D. Dombek und R.J. Angelici, Inorg. Chim. Acta, 7 (1973) 345.

11 F.A. Cotton, Inorg. Chem., 3 (1964) 702.

12 K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, 2nd Edition, Wiley, New York, 1970 und dort zitierte Literatur.

13 E.O. Fischer und H. Fischer, Chem. Ber., 107 (1974) 657.